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Abstract

A mathematical model consisting of an array of rotating pendulums was built to study the stability of an
array of rotating blades and the dynamic interaction between the blades and the rotor. This model can be
solved in closed form, yielding some general results regarding the stability of the system, particularly for the
effects of the blade–rotor interaction and of blade damping. The closed form solution so obtained is then
checked against a more realistic finite element method (FEM) model in which the blades are modelled as
beams. As a result, the possibility that the disc–blades interaction gives way to instability even in the case of
undamped systems, which has been known for many years, is confirmed for the case of in-plane oscillations
of ‘long’ blades. The damping associated to bladed arrays, although rotating, is shown not to have an
unstabilizing effect but, on the contrary, to help in counteracting the above-mentioned instability.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The instability of propellers due to the interaction between the dynamics of the blades and that
of the engine suspension is a well-known phenomenon [1,2]. This kind of instability may also
occur in rotating blades arrays, like those present in turbomachinery. Other instability
mechanisms may well be present: the role of damping in rotordynamics has been well known
for more than half a century [2–5]. All damping which can be associated to the non-rotating parts
of the machine has the usual stabilizing role as in structural dynamics, but damping of rotating
elements can trigger instability in the supercritical range. What actually happens is that rotating
damping couples rotational motion and vibration, causing energy to be transferred from the
former to the latter. This phenomenon is general, occurring every time energy dissipation takes
place in a rotating system: eddy current dampers in which energy is dissipated in the rotor can
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cause instability in the supercritical regime, while if energy is dissipated into the stator do not. The
same occurs in celestial dynamics when a satellite induces tides in a spinning planet and causes the
orbit of the Moon to grow in time and the rotation of the Earth about its axis to slow down.
Another instance is oil whip, caused by the viscosity of an oil film rotating at a speed about half of
the rotor speed [6].
Rotor damping is not the only cause of instability, and there are cases in which even an

undamped rotating system can become unstable. In the aforementioned instability of propellers as
well as in that of rotors partially filled with fluid, instability is linked with a wave propagating in
the rotor in a forward direction with respect to a non-rotating frame while it propagates in a
backward direction in a rotor-fixed frame [2,7].
Some doubts were cast on the unstabilizing effect of rotating damping in the case of bladed

discs. This is in no way just an academic matter. To prevent blade vibration, dampers can be
located in the disc: there is no doubt that these devices stabilize the motion of the rotor in
subcritical condition, but will they have an unstabilizing effect in the supercritical range?
The study of the dynamics of a bladed disc is quite complex and must be performed using

numerical models. To obtain a closed form solution, suitable for a stability analysis, it is possible
to resort to simplified models, like the ones used in the past for instance in Refs. [1,2], where the
blades are substituted by rotating pendulums, but generalizing them to the case of an
indeterminate number n of blades.

2. Dynamics of a row of rotating pendulums

2.1. Model definition

Consider a rigid rotor, with mass, polar and transversal moments of inertia md ; Jp and Jt

(symbols are listed in Appendix B), driven at a constant speed O on damped elastic isotropic
supports with stiffness matrix K and damping matrix C: At the periphery of the rigid body, in a
plane perpendicular to the rotation axis containing the centre of mass of the system, there is a row
of n (with nX3) identical rotating spherical pendulums, each one with a length l and a mass m:
Each pendulum is provided with a restoring spring, with rotational stiffness kp; and a damper with
damping coefficient l2cp: A further number n of viscous dampers with damping coefficient cq are
located between the bobs of two subsequent pendulums. The latter have been introduced to
simulate the damping acting between the blades (Fig. 1).
The system has a total of ð6þ 2nÞ degrees of freedom. The rigid rotor has six-degrees-of-

freedom; using a standard approach it is possible to take as generalized co-ordinates the lateral
displacements X and Y and the axial displacement Z of the centre of the rotor (point C in
[5, Fig. 4.15]), the flexural rotations fX and fy and the torsional rotation fz defined with respect
to the fixed (inertial) frame XYZ and the rotating (rotor-fixed) frame xyz defined in Ref.
[5, Section 4.4.1]. Since the disc is assumed to be perfectly balanced, the geometric centre of the
shaft C coincides with the centre of mass of the whole system, considered with the pendulums
locked in their radial position.
The generalized co-ordinates for the pendulums are n in-plane rotation angles fi (i ¼ 1;y; n)

and n out-of-plane rotation angles gi:
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The suspension system is assumed to allow uncoupling between axial, torsional and lateral
(flexural) behaviour and hence the axial, torsional and lateral stiffness and damping matrices can
be considered as independent from each other. Moreover, axial symmetry allows elastic
uncoupling between the lateral behaviour in xz and yz planes. The suspension system is
considered as non-rotating; this is realistic for the axial and lateral behaviour (the stiffness and
damping are attributed to the stator or the bearings), while for the torsional behaviour it would be
better to associate the stiffness and the damping to the (rotating) drive system. However this point
has little importance and will be dealt with later.

2.2. Uncoupled dynamics

Pendulums: If the supports of the disc are rigid and the pendulums do not have any restoring
spring or damper, the usual results for rotating pendulums apply. By linearizing the equations of
motion and neglecting gravitational acceleration, as usual with rotating pendulums, the natural
frequency of the pendulums are [5]

oip ¼ O

ffiffi
r

l

r
ðin-plane dynamicsÞ; ð1Þ

oop ¼ O

ffiffiffiffiffiffiffiffiffiffiffi
1þ

r

l

r
ðout-of-plane dynamicsÞ ð2Þ

Rigid rotor: If the pendulums are locked in their radial position, the system behaves as a single
rigid body with the following inertial properties:

mT ¼ md þ nm; JtT
¼ Jt þ

nmðr þ lÞ2

2
; JpT

¼ Jp þ nmðr þ lÞ2; ð3Þ

where mT is the total mass of the system.
By resorting to the usual small displacements and rotations assumption, the axial, torsional and

lateral behaviour of the rigid rotor are uncoupled. The axial and torsional natural frequencies of
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Fig. 1. Sketch of the position of the ith pendulum of the array: (a) projection in XY plane; (b) side view.
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the undamped system do not depend on the speed and are

oax ¼

ffiffiffiffiffiffiffi
ka

mT

s
; otors ¼

ffiffiffiffiffiffiffi
kt

JpT

s
: ð4Þ

The lateral natural frequencies can be computed using Eq. (4.73) in [5]

o4l � o3l O
JpT

JtT

� o2l
k11

m
þ

k22

JtT

� �
þ olO

k11JpT

mJtT

þ
k11k22 � k212

mJtT

¼ 0; ð5Þ

where kij are the elements of the stiffness matrix related to the lateral behaviour in xz plane.
Note that if k12 ¼ 0 the lateral behaviour uncouples into a translational (cylindrical whirling)

behaviour, whose natural frequency is

ol1 ¼

ffiffiffiffiffiffiffi
k11

mT

s
ð6Þ

and is not affected by the spin speed (Jeffcott rotor model), and a rotational (conical whirling)
behaviour, whose natural frequency is a function of the speed

ol2 ¼
JpT

O7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2pT

O2 þ 4JtT
k22

q
2JtT

: ð7Þ

2.3. Coupled dynamics: equations of motion

To study the coupled dynamics the whole system with ð6þ 2nÞ degrees-of-freedom must be
dealt with. The derivation of the Lagrangian and the Rayleigh dissipation function is quite
intricate and is performed in Appendix A.
By performing the relevant derivatives of the kinetic and potential energy, and linearizing the

results (remembering that fz and fi are small angles, while Ot and ci are not), the following linear
equations of motion can be obtained:

* First equation (translation along X -axis)

mT
.X � m

Xn

i¼1

f½lð .fi � O2fiÞ þ .fzðr þ lÞ�sinðyiÞ

þ ½ðO2 þ 2O ’fzÞðr þ lÞ þ 2Ol ’fi�cosðyiÞg

þ c11 ’X þ c12 ’fy þ k11X þ k12fy ¼ 0: ð8Þ

By remembering some trigonometrical identities and noting that

Xn

i¼1

sinðyiÞ ¼
Xn

i¼1

cosðyiÞ ¼ 0 ð9Þ
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it is possible to write the first equation in the form

mT
.X þ ml

Xn

i¼1

½ð� .fi þ O2fiÞcosðciÞ þ 2O ’fi sinðciÞ�sinðOtÞ

þ ml
Xn

i¼1

½ð� .fi þ O2fiÞsinðciÞ � 2O ’fi cosðciÞ�cosðOtÞ

þ c11 ’X þ c12 ’fy þ k11X þ k12fy ¼ 0: ð10Þ

* Second equation (translation along Y -axis)
Operating in the same way, the second equation becomes

mT
.Y þ ml

Xn

i¼1

½ð .fi � O2fiÞcosðciÞ � 2O ’fisinðciÞ�cosðOtÞ

þ ml
Xn

i¼1

½�ð .fi � O2fiÞsinðciÞ � 2O ’fi cosðciÞ�sinðOtÞ

þ c11 ’Y � c12 ’fX þ k11Y � k12fX ¼ 0: ð11Þ

* Third equation (translation along Z-axis)

mT
.Z þ ml

Xn

i¼1

½.gi þ ðl þ rÞð .fX þ 2 ’fyO� fXO
2Þ sinðyÞ

þ ðl þ rÞð� .fy þ 2 ’fXOþ fyO
2Þ cosðyÞ� þ ca

’Z þ kaZ ¼ 0; ð12Þ

i.e.,

mT
.Z þ ml

Xn

i¼1

.gi þ ca
’Z þ kaZ ¼ 0: ð13Þ

* Fourth equation (rotation fy about y-axis)

.fyJt � O ’fX Jp þ mðl þ rÞ
Xn

i¼1

f�ð .Z þ gilO
2 þ .gilÞ cosðyiÞ

þ ðl þ rÞð .fy � 2O ’fX Þ cos2ðyiÞ � ðl þ rÞð .fX þ 2O ’fyÞ


 cosðyiÞ sinðyiÞg þ c11 ’fy þ c12 ’X þ k11fy þ k12X ¼ 0: ð14Þ

By noting that

Xn

i¼1

sin2ðyiÞ ¼
Xn

i¼1

cos2ðyiÞ ¼
n

2
;
Xn

i¼1

sinðyiÞ cosðyiÞ ¼ 0 ð15Þ
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the fourth equation becomes

.fyJtT
� O ’fX JpT

� mlðr þ lÞ
Xn

i¼1

½.gi þ O2i gi� cosðyiÞ

þ c11 ’fy þ c12 ’X þ k11fy þ k12X ¼ 0; ð16Þ

i.e.,

.fyJtT
� O ’fX JpT

� mlðr þ lÞ cosðOtÞ
Xn

i¼1

½.gi þ O2gi� cosðciÞ

þ mlðr þ lÞ sinðOtÞ
Xn

i¼1

½.gi þ O2gi� sinðciÞ

þ c11 ’fy þ c12 ’X þ k11fy þ k12X ¼ 0: ð17Þ

* Fifth equation (rotation fX about X -axis)
Operating in the same way, the fifth equation becomes

.fX JtT
þ O ’fyJpT

þ mlðr þ lÞ sinðOtÞ
Xn

i¼1

½.gi þ O2gi� cosðciÞ

þ mlðr þ lÞ cosðOtÞ
Xn

i¼1

½.gi þ O2gi� sinðciÞ

þ c22 ’fX � c12 ’Y þ k22fX � k12Y ¼ 0: ð18Þ

* Sixth equation (torsional rotation fz about z-axis)

.fzJp þ mðl þ rÞ
Xn

i¼1

f½ .fzðl þ rÞ þ .fil�

� .X sinðyiÞ þ .Y cosðyiÞg þ ct
’fz þ ktfz ¼ 0; ð19Þ

i.e.,

.fzJpT
þ mlðl þ rÞ

Xn

i¼1

.fi þ ct
’fz þ ktfz ¼ 0: ð20Þ

* Following n equations, from the seventh to the ð6þ nÞth (in-plane rotations fi)

� .X sinðyiÞ þ .Y cosðyiÞ þ .fzðl þ rÞ þ .fil þ O2r þ
kp

ml

� �
fi

þ
l

m
ðcp þ 2cqÞ ’fi �

lcq

m
’fi�1 �

lcq

m
’fiþ1 ¼ 0 for i ¼ 1;y; n; ð21Þ
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where ’fnþ1 ¼ ’f1 and ’f0 ¼ ’fn; i.e.,

½� .X sinðciÞ þ .Y cosðciÞ� cosðOtÞ þ ½� .X cosðciÞ � .Y sinðciÞ� sinðOtÞ

þ .fzðl þ rÞ þ .fil þ O2r þ
kp

ml

� �
fi þ

l

m
ðcp þ 2cqÞ ’fi

�
lcq

m
’fi�1 �

lcq

m
’fiþ1 ¼ 0: ð22Þ

* Last n equations from the ð7þ nÞth to the ð6þ 2nÞth (out-of-plane rotations gi)

.Z þ l .gþ ð� .fy þ 2O ’fX Þðr þ lÞ cosðyiÞ þ ð .fX þ 2O ’fyÞðr þ lÞ sinðyiÞ

þ gi O2ðr þ lÞ þ
kp

ml

� 	
þ

l

m
ðcp þ 2cqÞ’gi �

lcq

m
gi�1 �

lcq

m
’giþ1 ¼ 0 ð23Þ

for i ¼ 1;y; n; i.e.,

ðl þ rÞ½�ð .fy � 2O ’fX Þ cosðciÞ þ ð .fX þ 2O ’fyÞ sinðciÞ� cosðOtÞ

þ ðl þ rÞ½ð .fy � 2O ’fX Þ sinðciÞ þ ð .fX þ 2O ’fyÞ cosðciÞ� sinðOtÞ

þ .Z þ l .gþ gi O2ðl þ rÞ þ
kp

ml

� 	
þ

l

m
ðcp þ 2cqÞ’gi

�
lcq

m
’gi�1 �

lcq

m
’giþ1 ¼ 0: ð24Þ

2.4. From pendulum co-ordinates to array co-ordinates

It is possible to simplify substantially the equations of motion by applying the co-ordinate
transformation

lfi ¼ u0 þ u1 cosðciÞ þ u2sinðciÞ þ u3 cosð2ciÞ þ u4 sinð2ciÞ þ?

lgi ¼ v0 þ v1 cosðciÞ þ v2 sinðciÞ þ v3 cosð2ciÞ þ v4 sinð2ciÞ þ? : ð25Þ

This transformation can be written in the form

/ ¼

f1
f2
f3
y

8>>><
>>>:

9>>>=
>>>;

¼
1

l

1 cosðc1Þ sinðc1Þ y

1 cosðc2Þ sinðc2Þ y

1 cosðc3Þ sinðc3Þ y

y y y

2
6664

3
7775

u0

u1

u2

y

8>>><
>>>:

9>>>=
>>>;

¼ Tu ð26Þ

and, with obvious meaning of the notation,

c ¼ Tv: ð27Þ

The transformation matrix T must be square, so that the number of harmonics to be considered
depends on the number of the pendulums. Consider for instance the case n ¼ 4: angles ci
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are 0; p=2; p and 3p=2 and matrix T is

T ¼
1

l

1 1 0 1

1 0 1 �1

1 �1 0 1

1 0 �1 �1

2
6664

3
7775:

By inverting the transformation matrix, it is possible to write

u0

u1

u2

y

8>>><
>>>:

9>>>=
>>>;

¼
l

n

1 1 1 y

h cosðc1Þ h cosðc2Þ h cosðc2Þ y

h sinðc1Þ h sinðc2Þ h sinðc2Þ y

h cosð2c1Þ h cosð2c2Þ h cosð2c3Þ y

y y y y

2
6666664

3
7777775

f1
f2
f3
y

8>>><
>>>:

9>>>=
>>>;
; ð28Þ

where h ¼ 2 everywhere, except for the last row in which h ¼ 2 if n is odd and h ¼ 1 if n is even.
The same holds for out-of-plane rotations.
The motions described by co-ordinates u0 and v0 are motions with all pendulums oscillating in

phase (Fig. 2a, for the case of 4 pendulums oscillating in-plane). The centre of mass of the system
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Fig. 2. Displacements of a row of four pendulums oscillating in the rotation plane of the disc corresponding to

co-ordinates u0; u1; u2 and u3:
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does not move and the motion is uncoupled with the lateral motions of the disc, while being
coupled with its torsional (or axial, when dealing with out-of-plane oscillations) oscillations.
The second and third co-ordinates u1 and u2 (Figs. 2b and c) (or v1 and v2) undergo motions

with two of the pendulums moving with 180� phasing with each other while the other two do not
move. In case of in-plane oscillations these modes cause a shift of the centre of mass in Y and X
directions and are coupled with displacements of the disc along Y and X axes, respectively. In the
case of out-of-plane oscillations they couple with rotations of the rigid body about X and Y axes.
The fourth co-ordinate u3 (Fig. 2d) (or v3) regards a motion with the pendulums moving at 180

�

phasing with each other. No inertia reaction is exerted on the disc (if it is considered as a rigid
body) and hence it is uncoupled with the dynamics of the latter. The same holds for all the other
co-ordinates which would have existed if there were more than four pendulums.

* First equation (X co-ordinate)

By inspecting Eq. (28) it is clear that the sums appearing in Eq. (10) are co-ordinates u1 and u2
and their time derivatives. The latter reduces to

mT
.X þ

nm

2
ð� .u1 þ O2u1 þ 2O ’u2Þ sinðOtÞ þ

nm

2
ð� .u2

þ O2u2 � 2O ’u1Þ cosðOtÞ þ c11 ’X þ c12 ’fy þ k11X þ k12fy ¼ 0: ð29Þ

Note that in the inertial terms of this equation only three generalized co-ordinates are present
X ; u1 and u2 while in the elastic and damping terms fy also appears. Moreover, the equation is
linear but the coefficients are periodic in time through angle Ot:

* Second equation (Y co-ordinate)

A similar consideration holds for the second equation, which also contains only four
generalized co-ordinates; in this case y; u1; u2 and fX :

mT
.Y �

nm

2
ð� .u1 þ O2u1 þ 2O ’u2Þ cosðOtÞ þ

nm

2
ð� .u2

þ O2u2 � 2O ’u1Þ sinðOtÞ þ c11 ’Y � c12 ’fX þ k11Y � k12fX ¼ 0: ð30Þ

* Third equation (Z co-ordinate)

mT
.Z þ nm.v0 þ ca

’Z þ kaZ ¼ 0: ð31Þ

The third equation contains only the generalized co-ordinates Z and v0; moreover it is a
constant coefficients linear equation.

* Fourth equation (fy co-ordinate)

.fyJtT
� O ’fX JpT

�
mn

2
ð1þ dÞð.v1 þ O2v1Þ cosðOtÞ

þ
mn

2
ð1þ dÞð.v2 þ O2v2Þ sinðOtÞ þ c11 ’fy þ c12 ’X þ k11fy þ k12X ¼ 0; ð32Þ

ARTICLE IN PRESS

G. Genta / Journal of Sound and Vibration 273 (2004) 805–836 813



where

d ¼
r

l
ð0odoNÞ: ð33Þ

* Fifth equation (fX co-ordinate)

.fX JtT
þ O ’fyJpT

þ
mn

2
ð1þ dÞð.v1 þ O2v1Þ sinðOtÞ

þ
mn

2
ð1þ dÞð.v2 þ O2v2Þ cosðOtÞ þ c22 ’fX � c12 ’Y þ k22fX � k12Y ¼ 0: ð34Þ

* Sixth equation (fz co-ordinate)

.fzJpT
þ nmlð1þ dÞ .u0 þ ct

’fz þ ktfz ¼ 0: ð35Þ

* Equations from the seventh to the ð6þ nÞth (co-ordinates ui).

The other n equations (22) can be substituted by their linear combinations

T�1p ¼ 0; ð36Þ

where T is the co-ordinate transformation matrix defined in Eq. (26) and pi is the right-hand side
of the generic ith equation of this group.
The first transformed equation (seventh equation) reduces to

l .fzð1þ dÞ þ .u0 þ
cp

m
’u0 þ O2dþ

kp

ml2

� �
u0 ¼ 0 ð37Þ

and couples only to the sixth equation; moreover it does not contain any term in cq: This was
expected, since it represents a motion in which all pendulums oscillate together, with the same
amplitude and phase, and hence the dampers located between the pendulums do not affect this
mode. This motion couples only with the torsional vibration of the rigid body due to the
compliance of the drive system.
The following two equations (Eqs. (8) and (9)) yield

� .X sinðOtÞ þ .Y cosðOtÞ þ .u1 þ
1

m
ðcp þ 2ciÞ ’u1 þ O2dþ

kp

ml2

� �
u1

�
cql

nm

Xn

i¼1

’fi½cosðciþ1Þ þ cosðci�1Þ� ¼ 0;

� .X cosðOtÞ � .Y sinðOtÞ þ .u2 þ
1

m
ðcp þ 2ciÞ ’u2 þ O2dþ

kp

ml2

� �
u2

�
cql

nm

Xn

i¼1

’fi½sinðciþ1Þ þ sinðci�1Þ� ¼ 0: ð38Þ
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By remembering that ciþ1 ¼ ci þ Dc and ci�1 ¼ ci � Dc (angle Dc ¼ 2p=n is the angle
between two subsequent pendulums), they reduce to

� .X sinðOtÞ þ .Y cosðOtÞ þ .u1 þ
1

m
c ’u1 þ O2dþ

kp

ml2

� �
u1 ¼ 0;

� .X cosðOtÞ � .Y sinðOtÞ þ .u2 þ
1

m
c ’u2 þ O2dþ

kp

ml2

� �
u2 ¼ 0; ð39Þ

where

c ¼ cp þ 2cq½1� cosðDcÞ� ¼ cp þ 4ci sin
2 Dc
2

� �
: ð40Þ

They are inertially coupled with the first two equations, showing that the motion with all
pendulums following a pattern of the type shown in Figs. 2b and c is coupled with the motion of
the disc.
The remaining equations, from the fourth one to the nth of this group (equation from the tenth

to (6þ n)th) are of the type

.u3 þ
1

m
½cp þ 4cq sin

2ðDcÞ� ’u3 þ O2dþ
kp

ml2

� �
u3 ¼ 0;

.u4 þ
1

m
½cp þ 4cq sin

2ðDcÞ� ’u4 þ O2dþ
kp

ml2

� �
u4 ¼ 0;

.u5 þ
1

m
cp þ 4cq sin

2 3

2
Dc

� �� 	
’u5 þ O2dþ

kp

ml2

� �
u5 ¼ 0: ð41Þ

These equations are uncoupled with each other and with all other ones and describe the
motions of the pendulums with different phasing. These equations are all equal, except for the role
played by damping cq: which increases with increasing order of the equations. If the pendulums
are many, the damping coefficient appearing in the last equation, that dealing with the variable
un�1; is cp þ 4cq:
They show that all motions following a pattern of the type shown in Fig. 2d, i.e. with the centre

of mass of the system of the pendulums stationary in the centre of the disc, are uncoupled with the
motion of the latter.

* Last n equations from the ð7þ nÞth to the ð6þ 2nÞth (co-ordinates vi).

These n equations can be combined linearly as seen for the case of the equations of the former
group (36).
The first of the combined equations (Eq. ð7þ nÞ) describes the motion with all pendulums

oscillating in phase

.Z þ .v0 þ
cp

m
’v0 þ O2ð1þ dÞ þ

kp

ml2

� 	
v0 ¼ 0: ð42Þ

It couples only with the third equation and describes the axial dynamics of the system.
The following two equations (Eqs. ð8þ nÞ and ð9þ nÞ) are inertially coupled with the first,

fourth and fifth equations (those dealing with the conical motion of the rigid rotor). Operating in
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the same way as before, and introducing the damping coefficient c expressed by Eq. (40), it
follows

ðdþ 1Þ½�ð .fy � 2O ’fX Þ�cosðOtÞ þ ðdþ 1Þ½ð .fX þ 2O ’fyÞ�sinðOtÞ

þ
1

l
.v1 þ

c

ml
’v1 þ

1

l
O2ðdþ 1Þ þ

kp

ml2

� 	
v1 ¼ 0;

ðdþ 1Þ½ð .fX þ 2O ’fyÞ� cosðOtÞ þ ðdþ 1Þ½ð .fy � 2O ’fX Þ� sinðOtÞ

þ
1

l
.v2 þ

c

ml
’v2 þ

1

l
½O2ðdþ 1Þ þ

kp

ml2
�v2 ¼ 0: ð43Þ

All the following equations (Eqs. ð10þ nÞ to ð6þ 2nÞ) do not contain either fX or fy: They are
all of the type

.vi þ
c�

m
’vi þ O2ðdþ 1Þ þ

kp

ml2

� 	
vi ¼ 0 for i ¼ 3;y; n � 1; ð44Þ

where c� is a damping coefficient of the type appearing in Eq. (41), showing that the
damping located between the pendulums is more important in the equations with a high value
of i: Since they are uncoupled with the other ones, these equations will not be dealt with any
further.
The disc–pendulums interaction can thus be studied using a set of 12 linear equations (with

periodic coefficients) in the six generalized co-ordinates of the rigid rotor, plus u0; u1; u2; v0; v1
and v2:

2.5. Axial dynamics

The axial dynamics of the system can be studied by resorting to the third and ð7þ nÞth
equations (31) and (42)

mT nm

nm nm

" #
.Z

.v0

( )
þ

ca 0

0 ncp

" #
’Z

’v0

( )

þ
ka 0

0 nm½O2ð1þ dÞ þ kp

ml2
�

" #
Z

v0

( )
¼ 0: ð45Þ

By introducing the non-dimensional parameters

a1 ¼
nm

mT

ð0oao1Þ and O� ¼
O
oax

; ð46Þ

where oax is the axial natural frequency of the system with the pendulums locked expressed by
Eq. (4), the equation of motion of the undamped system with no restoring spring can be written in
the form

1 a1
a1 a1

" #
.Z

.v0

( )
þ o2ax

1 0

0 a1O�
2

ð1þ dÞ

" #
Z

v0

( )
¼ 0: ð47Þ
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The natural frequencies of the undamped system are readily computed

o
oax

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ O�

2

ð1þ dÞ7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ O�

2

ð1þ dÞ�2 � 4O�
2

ð1þ dÞð1� a1Þ
q

2ð1� a1Þ

vuut
: ð48Þ

A non-dimensional Campbell diagram, plotted for a1 ¼ 0:1 and d ¼ 0:2 is shown in Fig. 3. A
value a1 ¼ 0:1 corresponds to quite light pendulums, having a total mass nm equal to one-ninth of
the mass of the disc ðnm ¼ md=9Þ; while d ¼ 0:2 corresponds to fairly long pendulums. The
coupled dynamics (full lines) is compared with the uncoupled dynamics (dashed lines). From the
figure it is clear that the coupling is repulsive (or conservative) [7] and that there is no field of
instability. By looking at the structure of the complete equation, it is clear that damping has the
usual role seen in structural dynamics, and that there is no danger of instability. Axial dynamics
will not be dealt with any further.

2.6. Torsional dynamics

The torsional dynamics of the system can be studied by resorting to the sixth and seventh
equations (35) and (37)

JpT
nmlð1þ dÞ

mnlð1þ dÞ nm

" #
.fz

.u0

( )
þ

ct 0

0 ncp

" #
’fz

’u0

( )

þ
kt 0

0 nðmO2 þ kp

l2
Þ

" #
fz

u0

( )
¼ 0: ð49Þ
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Fig. 3. Non-dimensional axial Campbell diagram for the case of pendulums with a ¼ 0:1 and d ¼ 0:2 ðo� ¼ o=oaxÞ:
Dashed lines: uncoupled solution; full lines: coupled solution. Note the conservative coupling.
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The equation has a structure which is very similar to that seen for axial dynamics, and the
same conclusions also hold for this case. Note that there is no difference whether the damping
of the torsional vibration of the rigid rotor (damping coefficient ct) acts on the rotor or on the
stator of the machine. This is a known result. Also torsional dynamics will not be dealt with any
further.

2.7. Lateral dynamics

The study of the lateral dynamics of the system can be performed by using eight equations: (1),
(2), (4), (5), (8), (9), ðn þ 8Þ and ðn þ 9Þ: They are all equations with periodic coefficients.
The physical meaning of u1 and u2 is straightforward. Each of the terms which are added to

yield u1 and u2 in Eq. (28) are the projections of the displacements in the direction of the rotating
axes x and Z of point Pi; divided by 2; when the centre of the support is locked in its rest position.
After adding all the terms, what is obtained is the displacement (divided by n=2) of the centre of
mass of the pendulums when they move following the pattern of Fig. 2b and c.
This set of eight equations can be transformed into a set of constant coefficients equations by

resorting to a further change of co-ordinates:

X1 ¼ �u2 cosðOtÞ � u1 sinðOtÞ;

Y1 ¼ u1 cosðOtÞ � u2 sinðOtÞ ð50Þ

which amounts to writing the displacement of the centre of mass of the pendulums in an inertial
frame instead of writing it with reference to the rotor fixed frame, and

fy1 ¼
1

l
½�v1 cosðOtÞ þ v2 sinðOtÞ�;

fX1 ¼
1

l
½v1 sinðOtÞ þ v2 cosðOtÞ�: ð51Þ

By performing the relevant computations and reordering the equations, they transform into

mT
.X þ

nm

2
.X1 þ c11 ’X þ c12 ’fy þ k11X þ k12fy ¼ 0;

mT
.Y þ

nm

2
.Y1 þ c11 ’Y � c12 ’fX þ k11Y � k12fX ¼ 0;

.X þ .X1 þ 2O ’Y1 þ
c

m
’X1 þ O2ðd� 1Þ þ

kp

ml2

� 	
X1 þ O

c

m
Y1 ¼ 0;

.Y þ .Y1 � 2O ’X1 þ
c

m
’Y1 þ O2ðd� 1Þ þ

kp

ml2

� 	
Y1 � O

c

m
X1 ¼ 0;

.fyJtT
� O ’fX JpT

þ .fy1Jm � 2O ’fX1Jm þ c11 ’fy þ c12 ’X þ k11fy þ k12X ¼ 0;
.fX JtT

þ O ’fyJpT
þ .fX1Jm þ 2O ’fy1Jm þ c22 ’fX � c12 ’Y þ k22fX � k12Y ¼ 0;

ðdþ 1Þð .fy � 2O ’fX Þ þ .fy1 � 2O ’fX1 þ
c

m
’fy1 � OfX1

� �
þ O2dþ

kp

ml2

� 	
fy1 ¼ 0;
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ðdþ 1Þð .fX þ 2O ’fyÞ þ .fX1 þ 2O ’fy1 þ
c

m
ð ’fX1 þ Ofy1Þ

þ O2dþ
kp

ml2

� 	
fX1 ¼ 0; ð52Þ

where

Jm ¼
nml2

2
ð1þ dÞ:

This set of equations can be further simplified by resorting to complex co-ordinates

rd ¼ X þ jY ; fd ¼ fy � jfX ;

rp ¼ X1 þ jY1; fp ¼ fy1 � jfX1; ð53Þ

where j ¼
ffiffiffiffiffiffiffi
�1

p
is the imaginary unit.

By adding the first equation to the second multiplied by j and the third one to the fourth
multiplied by j, it follows

mT .rd þ
nm

2
.rp þ c11 ’rd þ c12 ’fd þ k11rd þ k12fd ¼ 0;

.rd þ .rp þ
c

m
� 2jO

! "
’rp þ O2ðd� 1Þ þ

kp

ml2
� jO

c

m

� 	
rp ¼ 0: ð54Þ

Finally, by adding the fifth equation to the sixth multiplied by �j and the seventh one to the
eighth multiplied by �j; it follows

.fdJtT
� jO ’fdJpT

þ .fpJm � 2jO ’fpJm þ c12 ’rd þ c22 ’fd þ k12rd þ k22fd ¼ 0;

ðdþ 1Þð .fd � 2jO ’fd Þ þ .fp þ
c

m
� 2jO

! "
’fp þ O2dþ

kp

ml2
� jO

c

m

� 	
fp ¼ 0: ð55Þ

The set of two equations (54) deals with the in-plane behaviour of the system, while set (55)
deals with the out-of-plane behaviour. They are coupled by the damping terms in c12 and by the
elastic terms in k12:
Assuming that these terms are vanishingly small, the in-plane and the out-of-plane behaviour

decouple.
Note that the damping of the pendulums c plays in these equations the classical role of

rotating damping: it appears in the terms in the generalized velocities (i.e., in the damping
matrix of the system), but also in the terms in the generalized displacements (i.e., in the circulatory
matrix of the system). Note also that a gyroscopic term is present in all equations except the first
one.

2.7.1. In-plane dynamics

Consider the in-plane dynamics of the system. To assess the inertial coupling effects, firstly the
undamped system with no restoring spring at the pendulums will be studied. By stating k11 ¼ 0
and c11 ¼ c ¼ 0 and by introducing the non-dimensional parameter

a2 ¼
nm

2mT

0oa2o
1

2

� �
ð56Þ
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the equation of motion can be written in the form

1 a2
a2 a2

" #
.rd

.rp

( )
� 2jOa2

0 0

0 1

" #
’rd

’rp

( )

þ
o1 0

0 O2a2ðd� 1Þ

" #
rd

rp

( )
¼ 0; ð57Þ

where o1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k11=mT

p
is the natural frequency of mass mT on a spring with stiffness k11:

By introducing the non-dimensional speed and Laplace variable

O� ¼
O
o1

; s� ¼
s

o1
ð58Þ

a non-dimensional response depending only on a2 and d can be obtained from the characteristic
equation

det
s�2 þ 1 s�2a2

s�2a2 a2½s�2 � 2jO�s� þ O�2ðd� 1Þ�

" #
¼ 0: ð59Þ

By inspecting the stiffness matrix of the system it is clear that the condition d ¼ 1; i.e., r ¼ l; is
peculiar, since it corresponds to a singular stiffness matrix. Two cases can be defined:

* short pendulums, lor (i.e., d > 1), where the stiffness matrix is positive defined, and
* long pendulums, l > r (i.e., do1), where the stiffness matrix is negative defined.

Before attempting to solve Eq. (59), an approximate solution can be obtained by neglecting the
terms outside the main diagonal. The uncoupled dynamics of the system can thus be studied. The
first equation is

s�2 þ 1 ¼ 0: ð60Þ

Its solutions are

s� ¼ 7j ð61Þ

and correspond to the natural frequencies of the system oscillating on its supports with the
pendulums locked.
The second equation

s�2 � 2jO�s� þ O�2ðd� 1Þ ¼ 0 ð62Þ

yields the solutions

s� ¼ jO�ð17
ffiffiffi
d

p
Þ ð63Þ

and corresponds to the natural frequencies of the pendulums oscillating on the locked support.
This is fully consistent with the well-known result (Eq. (1)) for the in-plane natural frequency oip

of rotating pendulums, provided that it is accounted for that Eq. (1) is written with reference to
the rotating (rotor-fixed) frame, while Eq. (63) refers to the fixed (stator-fixed) frame.
In the rotating frame the global motion of the pendulum array can be seen as a forward moving

wave, propagating at an angular velocity oip plus a backward moving wave, propagating at an
angular velocity �oip: The forward moving wave is seen in the fixed frame as a wave propagating
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in a forward direction with a speed Oþ oip ¼ Oð1þ
ffiffiffi
d

p
Þ; which coincides with the solution with

ðþÞ in Eq. (63).
The backward wave is seen as in the fixed frame as a wave propagating with a speed O� oip ¼

Oð1�
ffiffiffi
d

p
Þ; coinciding with the solution with ð�Þ in Eq. (63). This wave propagates in a forward

direction if do1; i.e., in the case of long pendulums, and in a backward direction if d > 1; i.e., in
the case of short pendulums.
The non-dimensional Campbell diagram and the decay rate plot for the case of a long

pendulum with a ¼ 0:1 and d ¼ 0:2 are shown in Fig. 4a and b. A value a ¼ 0:1 corresponds to
pendulums having a total mass nm equal to one quarter of the mass of the disc ðnm ¼ 0:25mdÞ: A
field of instability, with a threshold at O� ¼ 1:24 is present. Note that, as expected, the threshold
of instability is located in the supercritical field.
A similar non-dimensional Campbell diagram, but for the case of a short pendulum with

a ¼ 0:1 and d ¼ 2 is reported in Fig. 4c. Here no instability range is present.
Numerical experimentation has shown that the field of instability is present wherever the

travelling wave which moves backwards in the rotating frame, moves forward in the fixed frame,
i.e., in the case of long pendulums ðdo1Þ: The value of a affects the width of the instability range,
but not its presence. No instability was found for the case of the short pendulum ðd > 1Þ:
This field of instability has nothing to do with rotating damping or with the circulatory matrix,

which has not been accounted for in the undamped model, but is due to the stiffness matrix, which
may not be positive definite.

ARTICLE IN PRESS

Fig. 4. (a) and (b) Campbell diagram and decay rate plot for the case of long undamped pendulums without restoring

springs, with a ¼ 0:1 and d ¼ 0:2: Note the field of instability. (c) Campbell diagram and decay rate plot for the case of
short pendulums with a ¼ 0:1 and d ¼ 2: In this case no field of instability exists. Dashed lines: uncoupled solution; full
lines: coupled solution. Note the non-conservative coupling in (a).
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The presence of the spring introduces a further parameter, for example

o�p ¼
op

o1
; ð64Þ

where op ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kp=ml2

p
is the natural frequence of the pendulums at standstill (neglecting the

gravitational acceleration as consistent with the whole study), but does not change the overall
picture.
When damping is considered, two further parameters

zd ¼
c11

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k11mT

p and zp ¼
mT

m

cp þ 4cq sin
2ðDc=2Þ

2
ffiffiffiffiffiffiffiffiffiffi
kmT

p ð65Þ

must be introduced.
The characteristic equation yielding the non-dimensional natural frequencies then becomes

det
s�2 þ 2s�zd þ 1 s�2a

s�2a a½s�2 þ 2s�zp þ O�2ðd� 1Þ þ o�2p � 2jO�ðs� þ zpÞ�

" #
¼ 0: ð66Þ

The uncoupled dynamics is easily studied. The motion of the system with the pendulums locked
is equivalent to that of a Jeffcott rotor with no rotating damping, and, assuming that the system is
underdamped ðzdo1Þ; the solutions for s� are

s� ¼ �zd7j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2d

q
: ð67Þ

The real part of s� is always negative, and the system is stable.
The motion of the pendulums on the locked support is governed by equation

s�2 þ 2ðzp � jO
�Þs� þ O�2ðd� 1Þ þ o�2p � 2jO�zp ¼ 0 ð68Þ

yielding

s� ¼ �zp þ jO
�7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2p � dO�2 � o�2p

q
: ð69Þ

Here there are two cases: if the damping is low, i.e., if z2podO�2 � o�2p ; the solutions for s are

s� ¼ �zp þ jðO
�7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dO�2 þ o�2p � z2p

q
Þ: ð70Þ

On the contrary, if the damping is high, i.e., if z2p > dO�2 � o�2p ; the solutions for s are

s� ¼ �zp7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2p � dO�2 � o�2p

q
þ jO�: ð71Þ

In all cases, the real part of s� is always negative, and the system is stable.
This is a remarkable result, since one would expect that the damping applied to the pendulums,

and above all that located between them, would have an unstabilizing effect, being rotating
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damping. However, it must be remembered that this applies to the uncoupled system, and that the
instability due to the coupling of the disc and pendulums dynamics is not included in it.
To study the interaction, the coupled system must be studied. Some numerical results

for undamped systems are shown in Fig. 5: the non-dimensional Campbell diagram and the
decay rate plot reported deal with the case of long pendulums with a ¼ 0:1; d ¼ 0:2 and
o�p ¼

ffiffiffi
2

p
(a and b) and o�p ¼ 1=

ffiffiffi
2

p
(d and e). The system is the same as that studied in

Fig. 4a and b, but with a restoring spring added. The instability ranges are clearly
visible.
The same restoring springs are applied to the short pendulum of Fig. 4c. The results are

reported in Fig. 5c and f and show that no instability range is present.
Cases with different combinations of non-rotating zd and rotating zp damping are shown in Fig.

6. The system is the long pendulums one of Fig. 4a and b. The effect of damping on the Campbell
diagram is not large, since all the values of z used are much smaller than unity, while is important
on the decay rate plot.
From the figure it is clear that with a low value of both non-rotating (disc) and rotating

(pendulums) damping the field of instability, although reduced in comparison with the undamped
case, is still present. An increase of any form of damping is effective in stabilizing the system,
although quite a large damping is needed to cancel completely the instability range. The feature
that the damping of the pendulums does not contribute to instability is thus also confirmed for the
coupled system.
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Fig. 5. Same as Fig. 4, but for pendulums with restoring springs.
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2.7.2. Out-of-plane dynamics

By introducing, together with the already mentioned parameter d; the non-dimensional
parameters

a3 ¼
Jm

JtT

¼
nmlðr þ lÞ

2Jt þ nmðr þ lÞ2
; b ¼

JpT

JtT

;

zd ¼
cd

2
ffiffiffiffiffiffiffiffiffiffiffiffi
k22JtT

p ; zp ¼
c
ffiffiffiffiffiffi
JtT

p
2m

ffiffiffiffiffiffiffi
k22

p ð72Þ

and the natural frequencies o1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22=JtT

p
and op ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kp=ml2

p
; the equation of motion can be

written in the form

1 a3
a3 a3

1þd

" #
.fd

.fp

( )
þ 2o1

zd 0

0 a3
ð1þdÞ zp

" #
� jO

b 2a3

2a3 2a3
1þd

" # !
’fp

’fd

( )

þ o21
1 0

0 a3
o2
1
ð1þdÞ ðdO

2 þ o2pÞ

" #
� jOo1

0 0

0 2a3
1þd zp

" # !
fd

fp

( )
¼ 0: ð73Þ

ARTICLE IN PRESS

Fig. 6. Campbell diagram (a, b, c) and decay rate plot (d, e, f) for damped long pendulums with a ¼ 0:1; d ¼ 0:2: and
o�p ¼

ffiffiffi
2

p
: Different combinations of non-rotating zd and rotating zp damping. Dashed lines: uncoupled solution; full

lines: coupled solution.
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By introducing the non-dimensional speed, Laplace variable and frequency

O� ¼
O
o1

; s� ¼
s

o1
; o�p ¼

op

o1
ð74Þ

a non-dimensional response can be obtained from the characteristic equation

det
s�2 þ s�ð2zd � jO

�bÞ þ 1 s�2a3 � 2jO�s�a3

s�2a3 � 2jO�s�a3 a3
ð1þdÞ ½s

�2 þ 2s�ðzp � jO
�Þ þ O�2dþ o�2p � 2jO�zp�

" #
¼ 0: ð75Þ

In this case there is no value of d causing the stiffness matrix to be singular. In this condition there
is no need to distinguish the cases of short and long pendulums.
As usual, the uncoupled problem can be solved before attempting to solve Eq. (75). The first

equation is

s�2 þ s�ð2zd � jO
�bÞ þ 1 ¼ 0: ð76Þ

It coincides with the equation of motion of an uncoupled system with four-degrees-of-freedom in
which only non-rotating damping is present. Its solutions are

s� ¼ �zd þ jO
� b
2
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zd � jO�

b
2

� �2
�1

s
ð77Þ

and no instability is obtained.
The second equation

s�2 þ 2s�ðzp � jO
�Þ þ O�2dþ o�2p � 2jO�zp ¼ 0 ð78Þ

yields the solutions

s� ¼ �zp þ jO
�7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2p � O�2ð1þ dÞ � o�2p

q
: ð79Þ

If damping and pendulum restoring force (stiffness kp) are neglected, Eq. (79) reduces to

s� ¼ jO� 17
ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p! "
ð80Þ

which is consistent with what has been obtained earlier on rotating pendulums: the natural
frequency for out-of-plane motion, referred to the rotating frame, of a single rotating pendulum is
oop defined by Eq. (2).
As in the previous case, the global motion of the pendulum array can be seen in the rotating

frame as a wave, propagating in a forward direction at an angular velocity oop plus a backward
wave, propagating at an angular velocity �oop: The forward wave is seen in the fixed frame as a
wave propagating in a forward direction with a speed Oþ oop ¼ Oð1þ

ffiffiffi
d

p
Þ; which coincides with

the solution with ðþÞ in Eq. (80). What is different from the in-plane oscillations of the pendulums
is that in the present case the backward wave is always seen in the fixed frame as a wave
propagating in a backward direction. Its speed is O� oop ¼ Oð1�

ffiffiffiffiffiffiffiffiffiffiffi
dþ 1

p
Þ; coinciding with the

solution with ð�Þ in Eq. (80).
The non-dimensional Campbell diagrams for the case of long pendulums with a ¼ 0:1 and

d ¼ 0:2 are shown in Fig. 7 for two different values of b; namely 1.6 (disc rotor) and 0.2 (long
rotor). Such a low value has been used as a limiting case, even though it makes little sense for a
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rotor with many pendulums. The non-dimensional parameters are the same (except for b) as those
used in Fig. 4a.
The decay rate plot is not shown as the real part of s is identical zero: no instability range is

present in this case.
While in the case of in-plane oscillations an instability range was found for the case of long

pendulums owing to the coupling of the motion of the pendulums and of the supporting disc, no
such phenomenon was found for the case of out-of-plane oscillations.
Some numerical results for the complete system, with restoring force and damping, are shown

in Fig. 8: the non-dimensional Campbell diagram and the decay rate plot reported deal with the
same case in Fig. 7, with a ¼ 0:1; d ¼ 0:2 and two values of b; 1:6 and 0.2. The restoring spring
has a stiffness leading to o�p ¼

ffiffiffi
2

p
and the damping parameters are zd ¼ 0:05 and zp ¼ 0:1:

From the figure it is clear that although rotating damping is much higher than non-rotating
damping, no field of instability is present.
Also in the case of out-of-plane oscillations rotating damping of the pendulums does not trigger

instability. In this case instability cannot be due to the interaction between the motion of the
pendulums and of the supports, so that the system is always stable.

2.8. Dynamics of a row of blades

As the study of rotating pendulums has shown, the dynamics of an array of blades which may
surround a rotor can interact with the dynamics of the rotor as a whole, to the point that
instability ranges may occur. In particular, the study of the behaviour of pendulums suggests that
in-plane vibrations are more dangerous, from this viewpoint, than out-of-plane vibrations.

ARTICLE IN PRESS

Fig. 7. Campbell diagrams for the case of out-of-plane oscillations of an array of pendulums with a ¼ 0:1; d ¼ 0:2 and
b ¼ 1:6 and b ¼ 0:2: Note that no field of instability is present. Dashed lines: uncoupled solution; full lines: coupled
solution.
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Unfortunately there is no simple model to substantiate these statements. The present section
will be devoted to the construction and the solution of a few highly idealized numerical models,
attempting to extract some general rules. These models will be based on the finite element method,
using the formulation described in Refs. [8–10]. The dynamics of the array is dealt with in a way
which is similar to what has been done for the study of the pendulums. The zeroth order
harmonics (like the one shown in Fig. 2a) couples with the torsional and axial dynamics of the
shaft, while the first order harmonics (Fig. 2b and c) are coupled with the flexural behaviour.
Higher order harmonics do not affect the behaviour of the rotor as a whole, and will not be
considered here.
Since the number of parameters is high, no attempt has been done to extract non-dimensional

parameters. Consider a system made by a rigid disc, suspended on a spring system, with a number
of prismatic blades. The data are summarized in Table 1.
Since the length of the blades is greater than the radius of the disc, they can be defined as long

blades, to use a term similar to that used for rotating pendulums. In the case of pendulums, this
leads to a field of instability.
The model is made by a rigid mass element, a spring element and a row-of 10 blades elements,

plus a disc element and two transition elements, since these are required by the code, when blades
are present. The uncoupled dynamics are studied in Fig. 9. If the blades are rigid bodies, the
behaviour is that of an uncoupled four (real) degrees of freedom system with the inertial

ARTICLE IN PRESS

Fig. 8. Campbell diagram and decay rate plot for the out-of-plane oscillations of a row of pendulums with a ¼
0:1; d ¼ 0:2 and two values of b; 1.6 and 0.2. The other data are o�p ¼

ffiffiffi
2

p
; zd ¼ 0:05 and zp ¼ 0:1: Dashed lines:

uncoupled solution; full lines: coupled solution.
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properties of the whole system, m ¼ 11:92 kg; JtT
¼ 2:88 kg m2; JpT

¼ 4:57 kg m2: The results are
plotted as dashed lines in the Campbell diagram of Fig. 9; owing to uncoupling, the translational
modes are those of a Jeffcott rotor.
The full lines in the same figures refer to the dynamics of the flexible blades on a rigid support.

Since the cross-section of the blades is square, at standstill the in-plane natural frequencies
coincide with the out-of-plane ones. As soon as the spin speed is non-vanishing, however, they
differentiate and the curves related to the various modes split in two. The out-of-plane natural
frequencies (particularly the first one) increase more sharply with the speed than the in-plane ones.

ARTICLE IN PRESS

Fig. 9. Uncoupled dynamics of a bladed disc on elastic supports. Full lines: dynamics of the blades on a stiff support;

dot and dash curves: same as before but computed through an approximated formula; dashed lines: dynamics of the

rigid system on elastic supports.

Table 1

Data for the FEM model of a disc with an array of prismatic blades

Disc Inertial properties m; Jt; Jp 8 kg; 2:6 kg m2; 4 kg m2

Outer radius ro 100 mm

Suspension stiffness k11; k22 ðk12 ¼ 0Þ 107 N=m; 107 Nm=rad

Blades Number n 10

Square cross-section 10 mm
 10 mm
Length l 500 mm

Material E 2:1
 1011 N=m2

r 7810 kg=m3
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As in the case of long pendulums, the lowest backward mode in the rotating frame becomes a
forward mode in the fixed frame. The simplified blade dynamics, computed using the natural
frequency at standstill oO¼0 and then using the approximated formula [11]

o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2O¼0 þ o2s

q
; ð81Þ

where os is the natural frequency of a rotating string of the same mass (to account for centrifugal
stiffening), is reported in the same figure with dot-and-dash curves. Note that the results so
obtained are remarkably close to those obtained through the FEM.
The coupled dynamics are shown in Fig. 10. The curves related to the disc and blade dynamics

interact with each other, and the first backward mode (actually it is backward only in the rotating
frame, in the inertial frame it is a forward mode) of the bladed array interacts with the forward
translational mode of the rigid system on elastic supports giving way to a field of instability. The
latter is very clearly evidenced by the decay rate plot.
Consider now the case of blades with a rectangular cross-section, so that there are no coincident

natural frequencies at standstill. The cross-section of the blades in the model was modified,
keeping the cross-sectional area constant: a rectangle 2:5 mm
 40 mm is assumed. The dynamic
behaviour is then much influenced by the angle the blade makes with the axial direction: if
c ¼ 90� the blade is aligned along the axial direction (lowest natural frequency is in-plane), while
if c ¼ 0 the blade is perpendicular to the axial direction.
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Fig. 10. Coupled dynamics of a bladed disc on elastic supports; Campbell diagram and decay rate plot.
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The Campbell diagram and the decay rate plot for the two limiting cases, c ¼ 90� and c ¼ 0
are reported in Fig. 11. The instability range shifts towards higher speeds when c decreases from
90� (Figs. 11a and b) to 0 (Fig. 11c and d).
The speeds at which the field of instability starts and ends are reported in Fig. 12 as functions of

angle c:
From the plots of Fig. 11 it is clear that in the case when the cross-section of the blades is

aligned with the axial direction, the frequencies of the in-plane modes are lower than those of the
out-of-plane ones and the relevant branches in the Campbell diagram do not cross. The opposite
occurs when c ¼ 90�:
To investigate the effect of damping in blades, the same model was modified by assigning a loss

factor to the various elements. All rotating elements were given a very high damping ðZ ¼ 0:1Þ
while the only non-rotating elements, the springs supporting the system, were given a very low
damping ðZ ¼ 0:005Þ: The value of the density of the material was lowered to 4000 kg=m3: The
results for the case c ¼ 90� are reported in Fig. 13.
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Fig. 11. Bladed disc with blades with rectangular cross-section. Campbell diagram and decay rate plot for the two

limiting cases, c ¼ 90� (a and b) and c ¼ 0 (c and d).
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As expected, the effect of damping on the Campbell diagram is not large, while it influences
deeply the decay rate plot. In a way which is similar to that which has been seen for the
rotating pendulum, the damping associated with the blades does not have an unstabilizing effect,

ARTICLE IN PRESS

Fig. 12. Bladed disc with blades with rectangular cross-section. Speeds at which the instability range starts and ends as

functions of angle c:

Fig. 13. Campbell diagram and decay rate plot for the bladed disc studied in Fig. 11(a) and (b) ðc ¼ 90�Þ; but with
hysteretic damping added. Rotating damping with loss factor Z ¼ 0:1; non-rotating damping with Z ¼ 0:005:
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although it is a form of rotating damping. The instability range is only slightly reduced
by the presence of damping, but all blade vibrations have a negative decay rate. The damping
associated to the blades, although rotating, does not trigger instability even in the supercritical
range.

3. Conclusions

The study of the interaction of the dynamics of a row of rotating pendulums with that of the
supporting disc yielded the following conclusions:

* The axial and torsional behaviour of the system are decoupled, and no inertial coupling exists
between in-plane and out-of-plane vibrations of the pendulums. This decoupling holds only if
the linearized dynamics are considered.

* If the pendulums are long (i.e., their length is greater than the radius at which they are
attached), an instability range is found where the line related with an in-plane wave which
travels backward with respect to the rotor but forward in a fixed frame crosses the line related
with the vibration of the supporting disc.

* If the pendulums are short all backward travelling waves also do the same in the fixed frame
and no instability range is present.

* Out-of-plane motion never becomes unstable.
* The presence of dampers, either between the disc and the pendulums or between the latter, has
no unstabilizing effect. Although rotating, their effect is similar to that of non-rotating
dampers.

Some numerical experiments performed on FEM models in which the blades are modelled as
prismatic beams essentially confirm the applicability of the results obtained on the pendulums to
actual blades.
A question remains: why the damping associated to the blades, although rotating, does not

trigger instability even when the rotor works in the supercritical range?
From a mathematical viewpoint, in the solution of the quadratic equation (68) a term �2jzpO

�

under the square root, coming from the square of the coefficient to the term in s�; cancels with the
term 2jzpO

� (typical of rotating damping and usually causing instability) coming from the product
of the coefficient of the term in s�2 and that in s�0 and then no imaginary term remains under the
square root. The term �2jzpO

� is due to an interaction between the gyroscopic (or Coriolis) effect
and rotating damping.
This interaction between rotating damping and gyroscopic effect suggests a simple heuristic

explanation: the slope on the Campbell diagram of the lines related with blade vibration is higher
than that of the bisector of the first quadrant or, in other words, the natural frequencies of the
blades increase with the speed in such a way that they work in subcritical conditions even when
the rotor as a whole is supercritical. This causes their damping to have no unstabilizing
effect, since it works ‘locally’ in subcritical conditions. This is likely to occur also in other cases,
like the vibration of flexible discs or membranes, whose natural frequencies grow quickly with
the speed.
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Appendix A. Lagrangian and Rayleigh functions

The generalized co-ordinates of the system are X ; Y ; Z; fy; fX ; fz; fi; and gi ði ¼ 1;y; nÞ;
they are all assumed to be small quantities. Since the rotor can perform torsional vibrations, the
rotation angle y is

y ¼ Ot þ fz ðA:1Þ

and its instant spin speed is

’y ¼ Oþ ’fz: ðA:2Þ

The kinetic energy of the rigid body is then [5]

Td ¼ 1
2

mdð ’X2 þ ’Y2 þ ’Z2Þ

þ 1
2
½Jtð ’f2X þ ’f2yÞ þ JpðO2 þ 2O ’fz þ ’f2z þ 2O ’fXfyÞ�: ðA:3Þ

The potential energy of the springs supporting the rigid body is

Ud ¼
1

2

X

fy

( )T
k11 k12

k12 k22

" #
X

fy

( )

þ
1

2

Y

fX

( )T
k11 �k12

�k12 k22

" #
Y

fx

( )
þ 1
2

kaZ2 þ 1
2

ktf
2
z ; ðA:4Þ

i.e. ,

Ud ¼ 1
2

k11ðX 2 þ Y 2Þ þ 1
2

k22ðf
2
X þ f2yÞ þ k12ðXfy � YfX Þ

þ 1
2

kaZ2 þ 1
2

ktf
2
z : ðA:5Þ

In a similar way, the Rayleigh dissipative function of the suspension system is

Fd ¼ 1
2

c11ð ’X2 þ ’Y2Þ þ 1
2

c22ð ’f2X þ ’f2yÞ þ c12ð ’X ’fy � ’Y ’fX Þ þ 1
2

ca
’Z2

þ 1
2

ct
’f2z : ðA:6Þ

The position in xy plane of point Pi in which the bob of the ith pendulum is located is

ðPi � OÞ ¼

X

Y

Z

8><
>:

9>=
>;þ RT1R

T
2R

T
3

r þ l cosðfiÞ cosðgiÞ

l sinðfiÞ cosðgiÞ

l sinðgiÞ

8><
>:

9>=
>;; ðA:7Þ
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where matrices R1; R2 and R3 are defined in Section 4.4.1 in [5] and angle yi included in
matrix R3 is

yi ¼ Ot þ fz þ ci ðA:8Þ

and ci is the angle which defines the position of the ith pendulum in the row

ci ¼ 2p
ði � 1Þ

n
: ðA:9Þ

Since the latter is a constant, ’yi ¼ Oþ ’fz ¼ ’y and .yi ¼ .fz ¼ .y: They are the same for all
pendulums.
By differentiating the expression of the position of point Pi with respect to time the velocity

and then the kinetic energy of the ith pendulum can be obtained. The complete expression
is too complicated to be reported here. When taking into account the small displace-
ments assumptions, by neglecting all powers of small quantities following the second one, it
reduces to

Ti ¼ 1
2

mf ’X2 þ ’Y2 þ ’Z2 þ ’f2i l2 þ ’g2i l2 þ 2 ’Z’gil � ’y2f2i rl

þ ð’y2 þ 2 ’fX
’yfyÞðr þ lÞ2 þ ð2 ’fi

’y� ’y2g2i Þlðl þ rÞ

þ 2½ð� ’fyg’yl � ’y ’X þ ’Z ’fX þ ’fX ’gil þ ’Z’yfyÞðl þ rÞ

� ’X ’fil � ’y ’Yfil� sinðyiÞ þ 2½ð� ’gi
’fyl þ ’y ’Y þ ’Z’yfX � ’Z ’fy

� ’y ’fXgilÞðr þ lÞ þ ’fi
’Yl � ’y ’Xfil� cosðyiÞ þ ’f2yðr þ lÞ2 cos2ðyiÞ

þ ’f2X ðr þ lÞ2 sin2ðyiÞ � 2 ’fy
’fX ðl þ rÞ2 cosðyiÞ sinðyiÞg: ðA:10Þ

The potential energy of the spring and the Rayleigh dissipative function of the dampers of the
ith pendulum are

UPi
¼ 1
2

kpðf
2
i þ g2i Þ; ðA:11Þ

FPi
¼ 1
2

l2cpð ’f2i þ ’g2i Þ þ
1
2

l2cq½ð ’fi � ’fiþ1Þ
2 þ ð’gi þ ’giþ1Þ

2�; ðA:12Þ

where ’fnþ1 ¼ ’f1 and ’gnþ1 ¼ ’g1:
The Lagrangian and the Rayleigh functions of the system are then

L ¼ Td �Ud þ
Xn

i¼1

ðTPi
�UPi

Þ; ðA:13Þ

F ¼ Fd þ
Xn

i¼1

FPi
: ðA:14Þ

Appendix B. Nomenclature

ca axial damping coefficient
cp damping coefficient of the pendulums
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cq damping coefficient of the dampers between the pendulums
ct torsional damping coefficient
j imaginary unit (j ¼

ffiffiffiffiffiffiffi
�1

p
)

l length of the pendulums
m mass of each pendulum
md mass of the rigid body
mt total mass
n number of pendulums
r radius
ka axial stiffness
kt torsional stiffness
C damping matrix
F rayleigh dissipation function
Jp polar moment of inertia
Jt transversal moment of inertia
K stiffness matrix
L lagrangian function
T kinetic energy
U potential energy
ai non-dimensional coefficient
b ratio Jp=Jt

d ratio r=l
gi out-of-plane angle of pendulums
z damping ratio
fi in-of-plane angle of pendulums
fX rotation about X -axis
fy rotation about y-axis
fz torsional rotation
ci angles defining the positions of pendulums
oax axial natural frequency
oip in-plane natural frequency
ol lateral natural frequency
oop out-of-plane natural frequency
otors torsional natural frequency
Dc angle between pendulums ðDc ¼ 2p=nÞ
O rotational speed
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